The benefit of decreased influenza virus survival due to humidification for the single and multiple humidifier scenarios are presented in Table 2. Estimates of the change in influenza virus survival ranged from 17.5% to 31.6% reduction in rooms with a humidifier operating. The largest decrease in influenza virus survival was in the home with radiant heat due to the larger increase in moisture levels in the room. When multiple humidifiers are employed, the rooms with humidifiers have similar reductions to the single humidifier scenario, but the decrease in virus survival on the entire first and second floors are more modest.
Download Home Humidifiers And Their Health Benefits
Results from this modeling analysis demonstrate that the use of portable residential humidifiers increases RH and AH to levels that can potentially decrease the survival of airborne influenza virus in a residential setting. This effect is more pronounced in rooms where the humidification is located. While this study evaluated the impacts in a residential setting, the expected benefits of humidification are likely to be larger in places where larger populations of people with the flu and people susceptible to the flu congregate.
AprilAire introduced the first whole-home humidifier in the industry in 1954, and since then AprilAire continues to lead the industry in humidification technology and Healthy Home solutions.Our humidifiers provide whole-home humidification for every type of home. Designed and assembled in the USA utilizing US and global components, we ensure world-class quality backed with our 5-year warranty.During winter months, properly humidified air can help reduce the transmission of viruses, in addition to reducing asthma flares and helping you sleep better.Trouble-free performance and minimal maintenance are our standards. AprilAire Humidifiers are built with non-metal parts that will never rust or corrode providing the highest quality product that's built to last.
AprilAire introduced the first whole-home humidifier in the industry in 1954, and since then AprilAire continues to lead the industry in humidification technology and healthy home solutions. Our humidifiers provide whole-home humidification for every type of home. Designed and assembled in the USA utilizing US and global components, we ensure world-class quality backed with our 5-year warranty. During winter months, properly humidified air can help reduce the transmission of viruses like the flu, in addition to reducing asthma flares and helping you sleep better. Trouble-free performance and minimal maintenance are our standards. AprilAire Humidifiers are built with non-metal parts that will never rust or corrode providing the highest quality product that's built to last.
The natural humidity level in the air varies by weather: typically, in the Northern Hemisphere, winter air is dryer and summer air is moister. Higher humidity has many health benefits, from keeping skin healthy to reducing symptoms of asthma and allergies.
However, too much humidity can cause dust mites and mold to spread. Therefore, people with these indoor allergies should clean their humidifiers regularly and monitor humidity levels so they don't exceed 50%.
While humidifiers can have many health benefits, it's necessary to clean them properly. A dirty humidifier is a breeding ground for bacteria and mold, which can cause asthma and allergy flare-ups, flu-like symptoms, and even lung infections.
However, if your humidifier is not maintained properly, it can accumulate bacteria that can worsen allergy symptoms or cause sickness or infections. Therefore, make sure to clean your humidifier properly and monitor humidity levels to achieve these health benefits.
IntroductionWe all face a variety of risks to our health as we go about our day-to-day lives. Driving in cars, flying in airplanes, engaging in recreational activities, and being exposed to environmental pollutants all pose varying degrees of risk. Some risks are simply unavoidable. Some we choose to accept because to do otherwise would restrict our ability to lead our lives the way we want. Some are risks we might decide to avoid if we had the opportunity to make informed choices. Indoor air pollution and exposure to hazardous substances in the home are risks we can do something about.
In the last several years, a growing body of scientific evidence has indicated that the air within homes and other buildings can be more seriously polluted than the outdoor air in even the largest and most industrialized cities. Other research indicates that people spend approximately 90% of their time indoors. Thus, for many people, the risks to health from exposure to indoor air pollution may be greater than risks from outdoor pollution.
Biologic PollutantsBiologic pollutants include bacteria, molds, viruses, animal dander, cat saliva, dust mites, cockroaches, and pollen. These biologic pollutants can be related to some serious health effects. Some biologic pollutants, such as measles, chickenpox, and influenza are transmitted through the air. However, the first two are now preventable with vaccines. Influenza virus transmission, although vaccines have been developed, still remains of concern in crowded indoor conditions and can be affected by ventilation levels in the home.
Toxics and Irritants. Many molds also produce mycotoxins that can be a health hazard on ingestion, dermal contact, or inhalation [14]. Although common outdoor molds present in ambient air, such as Cladosporium cladosporioides and Alternaria alternata, do not usually produce toxins, many other different mold species do [17]. Genera-producing fungi associated with wet buildings, such as Aspergillus versicolor, Fusarium verticillioides, Penicillium aiurantiorisen, and S. chartarum, can produce potent toxins [17]. A single mold species may produce several different toxins, and a given mycotoxin may be produced by more than one species of fungi. Furthermore, toxin-producing fungi do not necessarily produce mycotoxins under all growth conditions, with production being dependent on the substrate it is metabolizing, temperature, water content, and humidity [17]. Because species of toxin-producing molds generally have a higher water requirement than do common household molds, they tend to thrive only under conditions of chronic and severe water damage [18]. For example, Stachybotrys typically only grows under continuously wet conditions [19]. It has been suggested that very young children may be especially vulnerable to certain mycotoxins [19, 20]. For example, associations have been reported for pulmonary hemorrhage (bleeding lung) deaths in infants and the presence of S. chartarum [21,22,23, 24]. Causes of Mold. Mold growth can be caused by any condition resulting in excess moisture. Common moisture sources include rain leaks (e.g., on roofs and wall joints); surface and groundwater leaks (e.g., poorly designed or clogged rain gutters and footing drains, basement leaks); plumbing leaks; and stagnant water in appliances (e.g., dehumidifiers, dishwashers, refrigerator drip pans, and condensing coils and drip pans in HVAC systems). Moisture problems can also be due to water vapor migration and condensation problems, including uneven indoor temperatures, poor air circulation, soil air entry into basements, contact of humid unconditioned air with cooled interior surfaces, and poor insulation on indoor chilled surfaces (e.g., chilled water lines). Problems can also be caused by the production of excess moisture within homes from humidifiers, unvented clothes dryers, overcrowding, etc. Finished basements are particularly susceptible to mold problems caused by the combination of poorly controlled moisture and mold-supporting materials (e.g., carpet, paper-backed sheetrock) [15]. There is also some evidence that mold spores from damp or wet crawl spaces can be transported through air currents into the upper living quarters. Older, substandard housing low income families can be particularly prone to mold problems because of inadequate maintenance (e.g., inoperable gutters, basement and roof leaks), overcrowding, inadequate insulation, lack of air conditioning, and poor heating. Low interior temperatures (e.g., when one or two rooms are left unheated) result in an increase in the relative humidity, increasing the potential for water to condense on cold surfaces.
As with fire deaths, the risk for unintentional CO death is highest for the very young (ages 4 years and younger) and the very old (ages 75 years and older). CO is an odorless, colorless gas that can cause sudden illness and death. It is a result of the incomplete combustion of carbon. Headache, dizziness, weakness, nausea, vomiting, chest pain, and confusion are the most frequent symptoms of CO poisoning. According to the American Lung Association (ALA) [33], breathing low levels of CO can cause fatigue and increase chest pain in people with chronic heart disease. Higher levels of CO can cause flulike symptoms in healthy people. In addition, extremely high levels of CO cause loss of consciousness and death. In the home, any fuel-burning appliance that is not adequately vented and maintained can be a potential source of CO. The following steps should be followed to reduce CO (as well as sulfur dioxide and oxides of nitrogen) levels:
The EPA [37] states that, because of their relative body size and respiratory rates, children are affected by ETS more than adults are. It is estimated that an additional 7,500 to 15,000 hospitalizations resulting from increased respiratory infections occur in children younger than 18 months of age due to ETS exposure. Figure 5.3 shows the ETS exposure levels in homes with children under age 7 years. The following actions are recommended in the home to protect children from ETS: 2ff7e9595c
Comments